
1

The NIST EXPRESS Toolkit
–

Obtaining and Installing

Don Libes

Abstract
The NIST EXPRESS toolkit is a software library for building EXPRESS-related tools. The EXPRESS

Toolkit is based on Draft International Standard (DIS) 10303-11 (N151). The NIST Part 21 Ex-
change File Toolkit is a software library for building Part 21-related tools. The Part 21 Toolkit is
based on DIS 10303-21. This paper describes how to obtain the toolkits and install them. No
knowledge of EXPRESS or the EXPRESS Toolkit is presumed other than a familiarity with file trans-
fer and similar installation procedures. A rudimentary grasp of the theory of typical computer
language implementations is useful but not necessary.

Keywords: compiler, EXPRESS; implementation; National PDES Testbed; PDES; STEP

Context
The PDES (Product Data Exchange using STEP) activity is the United States’ effort in support of
the Standard for the Exchange of Product Model Data (STEP), an emerging international standard
for the interchange of product data between various vendors’ CAD/CAM systems and other man-
ufacturing-related software [1]. A National PDES Testbed has been established at the National
Institute of Standards and Technology to provide testing and validation facilities for the emerging
standard. The Testbed is funded by the Computer-aided Acquisition and Logistic Support
(CALS) program of the Office of the Secretary of Defense.

As part of the testing effort, NIST is charged with providing a software toolkit for manipulating
STEP data. The NIST EXPRESS Toolkit and NIST Part 21 Exchange File Toolkit are a part of this.
The toolkits are evolving, research-oriented software tools. This document is one of a set of re-
ports (an overview of each appears in [2]) which describe various aspects of the Toolkit.

Introduction
The NIST EXPRESS Toolkit (called the “toolkit” or the “EXPRESS toolkit” from here on) [2] is a
software library for building EXPRESS-related tools [3]. The NIST Part 21 Exchange File Toolkit
(called the “P21 toolkit” from here on) [4] is a software library for building Part 21-related tools.
The EXPRESS toolkit may be installed by itself, but the P21 toolkit requires the EXPRESS toolkit be
present.

2

Obtaining the Toolkits
The toolkits are distributed in two ways: latest public release, and all releases. The latest public
release is just what it sounds like: the latest version of the software that has been approved for
public release. This is generally what most people want.

Alternatively, it is possible to get the entire set of releases. This is useful, not so much because of
the earlier releases, but this includes experimental releases well before they are released to the
public. At the same time, such experimental releases are often unstable, while the public releases
are more thoroughly tested. Access to the entire set of releases is only available by explicit ap-
proval of the National PDES Testbed. For more information, contact:

FASD - National PDES TEstbed
National Institute of Technology and Standards
Bldg 220, Rm A-127
Gaithersburg, MD 20899

npt-info@cme.nist.gov
1-301-975-3508

Occasional references will be made to SOLIS [5][6]. SOLIS stands for “the STEP OnLine Infor-
mation Service” and provides access to files in a number of ways. These are described below.

Documentation
A number of documents are (or soon will be) available that describe the toolkit. These can be re-
ceived similarly to the way that the toolkit is received. The documents are stored in a number of
files. The list of file names will be referred to in other parts of these document. The following file
names and references (see References on page 13) correspond to the EXPRESS toolkit:

File Name Reference
exptk-intro.ps.Z [2]
exptk-requirements.ps.Z [7]
exptk-design-and-impl.ps.Z [8]
exptk-lessons-learned.ps.Z [9]
exptk-using-apps.ps.Z [10]
exptk-obtaining-installing.ps.Z this document
exptk-programmer-ref.ps.Z [11]
exptk-creating-apps.ps.Z [12]
exptk-updating-apps.ps.Z [13]

The following file names and references correspond to the P21 toolkit:

p21tk-update.ps.Z [4]
p21tk-ref.ps [14]
p21tk-design.ps [15]

Internet ftp
If you have ftp and are connected to the Internet, you can retrieve the latest public release of the
toolkits as described here. The following explanation assumes you are familiar with anonymous
ftp. For more information, read [6].

3

Connect to ftp.cme.nist.gov 1as anonymous:

ftp ftp.cme.nist.gov

Connected to ftp.cme.nist.gov

220 tribble FTP server (Version 4.167 Wed Aug 14 22:26:49 EDT
1991) ready.

Name: anonymous

331 Guest login ok, send ident as password.

Password: (type your email address)

230 Guest login ok, access restrictions apply.

Retrieve the EXPRESS toolkit:

ftp> cd /pub/step/npttools

200 PORT command successful.

ftp> get exptk.tar.Z

200 PORT command successful.

150 Opening data connection for exptk.tar.Z (binary mode) (122273
bytes).

226 Transfer complete.

122273 bytes received in 1.26 seconds (8.7 Kbytes/s)

Retrieve the P21 toolkit:

ftp> get p21tk.tar.Z

200 PORT command successful.

150 Opening data connection for p21tk.tar.Z (binary mode) (73932
bytes).

226 Transfer complete.

73932 bytes received in 0.83 seconds (8.7 Kbytes/s)

Retrieve the corresponding documentation:

ftp> cd /pub/step/nptdocs

ftp> get exptk-intro.ps.Z

ftp> get exptk-requirements.ps.Z

ftp> get...

For the complete list of documentation files, see Documentation on page 2. Once you have re-
trieved all the files, read Unpacking the Documentation on page 12.

Email
If you can email to the Internet, you can receive the latest public release of the toolkits in response
to sending mail. The following explanation assumes you are familiar with electronic mail. For
more information, read [6].

1. ftp.cme.nist.gov is a CNAME record which can points to a number of different hosts depending on load aver-
ages and other factors. If your system can not dereference ftp.cme.nist.gov (i.e. does not understand CNAME
records), use the Internet address 129.6.32.54. This address is not guaranteed to always work, but is the best that
can be advertised short of fixing your machine to understand CNAMEs.

4

To receive files send a mail message to nptserver@cme.nist.gov2. This will be read by soft-
ware which understands certain requests. Each request should be on a line by itself. Do not
include a signature or header.

To get the EXPRESS and P21 toolkits include the lines:

send step/npttools/exptk.tar.Z

send step/npttools/p21tk.tar.Z

To get each document, include a line naming the appropriate document. For all the document file
names, see Documentation on page 2. For example:

send step/nptdocs/exptk-intro.tar.Z

send step/nptdocs/exptk-requirements.tar.Z

send step/nptdocs/exptk-design-and-impl.tar.Z

In response to your mail, you will receive a number of mail messages. Since the files are longer
than many mailers permit, they are broken into a number of mail messages. For each group of
mail messages that was originally a single file, strip off the headers added by the mailer and join
the messages together. Call the result X.uu where X is the original file name according to the sub-
ject of each message. Run each resulting file through uudecode. uudecode is a popular
program available from numerous public-access source-code repositories such as uunet.uu.-
net. On a UNIX system, uudecode would be run on the toolkit as follows:

uudecode exptk.tar.Z.uu

This will create the file exptk.tar.Z in the current directory. You can now delete exptk.-
tar.Z.uu. Repeat this procedure with any other files you receive. After all files have been run
through uudecode, read Unpacking on page 11.

Kermit
If you have a modem and Kermit, you can receive the latest public release of the toolkit. Kermit
is a popular communications and file transfer program. It is available from numerous public-ac-
cess source-code repositories such as uunet.uu.net. The following explanation assumes you are
familiar with modems and Kermit. For more information, read [6].

From your local Kermit client software, dial 1-301-948-9720. This will connect you to NISTnet,
an in-house NIST network. Connections up to 9600 baud (V.32) are supported. Once connected,
press return.

VCP-1000 V3.302

NISTnet Modem Pool

Please type HELP if you need assistance

Enter username>

Enter a name. Any name is acceptable. You must then connect to the computer running the NPT
Kermit server. Log in to this computer as “kermit”.

Enter username> libes

2. “NPT” stands for “National PDES Testbed”.

5

nistnet_6>connect solis.cme.nist.gov

Local -010- Session 1 to SOLIS.CME.NIST.GOV established

login: kermit

Last login: Tue Jan 19 16:39:07 from modems.nist.gov

SunOS Release 4.1.2 (TRIBBLE) #2: Wed Sep 2 12:17:13 EDT 1992

 WELCOME to the SOLIS

 Kermit Server!

The system may ask you some questions such as your name and organization. After answering
them you will be rewarded with the prompt “Solis-Kermit”. To retrieve the EXPRESS toolkit
enter the following commands:

Solis-Kermit>cd step/npttools

/pub/solis/npttools

Solis-Kermit>set file type binary

Solis-Kermit>send exptk.tar.Z

Now escape back to your local Kermit and give the receive command. A similar sequence is
followed in order to receive each document, except that the directory is different and the “set
file type binary” command is not necessary:

Solis-Kermit>cd step/nptdocs

/pub/step/nptdocs

Solis-Kermit>send exptk-intro.ps.Z

The P21 toolkit and other documents can be received by issuing analogous send commands. For
all the documentation file names, see Documentation on page 2.

When you have finished, type “quit” to the kermit server. This will return you to the “nist-
net” prompt to which you should type “logout”. This will terminate your phone connection.

Solis-Kermit>quit

Local -011- Session 1 disconnected

nistnet_6>logout

Once you have retrieved all the files, read Unpacking on page 11.

NFS
By agreement with the NPT adminstrator, NFS access is permitted to selected users inside and
outside NIST. If you have NFS access to the Testbed, it is possible to retrieve the latest release or
all releases. It is also possible to obtain precompiled code for selected platforms in the testbed.
All file references in this section are assumed to be from cme.nist.gov.

~pdes and ~pdevel are two file systems that contain PDES code. ~pdes contains files that are
available to the public. This is exactly what is available through SOLIS. Through the RCS ar-
chives, it is also possible to obtain earlier releases that were once available to the public but are no
longer. ~pdevel contains files that are used by the developers at NIST. (“pdevel” stands for

6

“PDES Development”.) Files in ~pdevel typically reflect the latest work available however they
can be less stable and are often experimental, alpha, or beta releases. ~pdevel also contains ar-
chives of earlier releases. These earlier releases do not change although releases that are no
longer considered useful are occasionally destroyed for space reclamation.

These instructions assume that you will create your own directory in which to store copies of the
original code. This will prevent collisions between you and others caused by changing files while
other people are working.

Out of convention, we assume your personal directory in which you are working with the toolkits
is ~/pdes. This is created as:

mkdir ~/pdes

Obtaining Precompiled Code

The toolkit is composed of a number of files. Not all files are necessary for some uses. In order to
run fedex, the schema analysis software tool, all that is necessary is arch/bin/fedex in ~pdes
or ~pdevel. In order to run p21, the STEP Part 21 Exchange File analysis tool, only arch/
bin/p21 is necessary.

In order to write EXPRESS toolkit applications, the following file is necessary:

arch/lib/libexpress.a

In order to write P21 toolkit applications, the following file is also necessary:

arch/lib/libp21.a

If you have your own lib directory, say in ~/pdes, you can link the individual files to it:

ln -s ~pdes/arch/lib/* ~/pdes/arch/lib

If you do not have your own lib directory, but still do not wish to use ~pdes directory, you can
link to the directory itself:

ln -s ~pdes/arch/lib ~/pdes/arch/lib

The rationale for the extra directory (“arch”) in each path is described in Installing the EX-
PRESS Toolkit Library and Executables on page 11.

Obtaining Documentation

The documentation can be found in docs/exptk and docs/p21tk in either ~pdes or ~pdev-
el. The names are subject to frequent change and are therefore not documented here. It is highly
recommended to retrieve the documents as described in Documentation on page 2

Obtaining Source

If you want to retrieve the source, you should instantiate your own version of it from the RCS ar-
chives. You may choose to do this either from ~pdes or ~pdevel depending on your needs. The
following examples will demonstrate how to do this from ~pdes although this could also be done
from ~pdevel.

To retrieve the source, create the appropriate subdirectories. Each subdirectory will contain a link
to the corresponding RCS directory. Check out the CheckOut file, and then run CheckOut itself.

7

This checks out all the other files from the RCS archives. The following commands do this from
~pdes. Similar commands would suffice to extract files from ~pdevel.

First check out the source to the EXPRESS library:

% mkdir -p ~/pdes/src/express

% ln -s ~pdes/src/express/RCS ~/pdes/src/express

% co CheckOut

% CheckOut

After running each CheckOut, expect a page or so of output as each file composing the toolkit is
checked out.

If you want to use the P21 toolkit, you can repeat this sequence of commands, with “express”
replaced by “p21”.

Check out a copy of mkrules.

% cd ~/pdes

% mkdir include

% cd include

% co ~pdes/include/mkrules

The following utilities must be obtained:

bin/bison.errors

bin/move-if-change

bin/uniquify_flex

bin/uniquify_lex

bin/uniquify_yacc

bin/yaccpar.sun

bin/yacctokens.sh

bin/bisontokens.sh

/depot/gnu/arch/bin/bison

/depot/gnu/arch/bin/flex

Most of these files live in ~pdes/bin and it is normally sufficient to create a symbolic link be-
tween this and your own bin directory as:

ln -s ~pdes/bin ~/pdes/bin

If you already have a directory by that name, you may link the individual files:

ln -s ~/pdes/bin/* ~/pdes/bin

The GNU utilities in the list above are only necessary if you are using Bison and/or Flex. If is al-
most never necessary to copy the GNU utilities. Instead, the directory /depot/gnu/arch/bin
should be in your path.

Building and Installing the Toolkits
This section describes how to convert the sources to executables. If you do not yet have the tool-
kit source, read Obtaining the Toolkits on page 2.

8

Customizing the Toolkits
It is possible and in some cases necessary to customize the toolkit to each new site. This is usual-
ly done by modifying various files before compilation.

Mkrules

mkrules contains definitions common to both toolkits as well as some of the applications. There
are actually two different versions of mkrules, one for the EXPRESS toolkit, and one for the ap-
plications. The one for the toolkit is in the src directory itself, while the application version is in
the include directory. If you are only compiling the toolkit and other programs in the toolkit di-
rectory, the following discussion applies only to that one mkrules, otherwise it applies to both.

If you examine mkrules, you will find ways to customize your installation. One customization is
almost always necessary. Namely, you must tell mkrules the directory in which you are keeping
all your the toolkit code.

In order to make this change, start by making mkrules writeable:

chmod +w mkrules

Change the definition of PDES to reflect the root of the directories where you have the toolkit
sources, binaries and other utilities stored. Make does not understand the ~ notation, so you must
provide the hardcoded path. For example, a person named “Fred” whose home directory is
~fred would have to expand this to an absolute path name. For example:

PDES=/usr/fred/pdes/

The mkrules file contains many other basic definitions such as which C compiler to use, flags to
pass to it, and the locations of most of the libraries and include directories. Such customizations
can also be moved to an application-specific makefile, if the customization is not appropriate
for all applications. From here on, if we say a change can be made by modifying a makefile,
you can assume that this also means that it can be modified for all applications in mkrules.

Lex vs. Flex and Yacc vs. Bison

The toolkit can be built using either lex or flex and yacc or bison [16][17][18]. Either pair-
ing works. For example, lex and yacc can be used and so can lex and bison. Similarly with
flex.

To switch the scanner or parser tools, mkrules must be edited. A large block of commands com-
pose the rules for .y.c and .y.o (i.e., how to transform yacc into C source and object code).
One definition exists for yacc and one for bison. Comment out one block and uncomment out
the other block. Similarly for lex and flex. These rules are called .l.c and .l.o. An addi-
tional rule in each set is provided for profiling.

If the parser definitions are changed, expparse.y (in the EXPRESS toolkit) and p21yacc.y (in
the P21 toolkit) should be touched in order to force recompilation. If the scanner definitions are
changed, things that depend on them should be recompiled. expscan.l and lex_actions.c
(in the EXPRESS toolkit) and p21lex.o (in the P21 toolkit) should be recompiled.

It is possible to augment the normal yacc/bison parser so that it generates better error messages
[19]. With this modification, syntax error messages will look like “syntax error, found TYPE but
expected ENTITY or RULE or FUNCTION” rather than just “syntax error near TYPE”. This re-

9

quires modifications to the parser as well as the parser skeleton provided with the parser
generator. By default, this is enabled by the CFLAGS_I definition via the flag -DAXEL.

In order to modify the SunOS 4.1.2 yacc (others may vary), the file ~pdes/bin/yacctokens.-
sh should be copied to /usr/lib/yaccpar. No explicit modification is required for Bison
(1.03); others may vary. In this case, the parser-generated C code is corrected by bin/bison.errors.

Profiling

It is possible to compile the code for profiling – i.e., timing and counting subroutine calls. To en-
able profiling, add “-pg” to the CFLAGS definition in the makefile. Then touch all sources. (It
is not necessary to touch .l and .y files) and recompile.

Diagnostics and Debugging

There are numerous ways to enable the toolkits to generate additional diagnostic information that
is not ordinarily useful to end-users. Most require compile-time flags in order so that the non-de-
bugging mode runs as quickly as possible.

Flex Debugging

The flag -DFLEX_DEBUG can be added to the CFLAGS line in the makefile to have flex print
the characters seen and tokens created. -d will generate debugging information, and -v will gen-
erate summary statistics.

Malloc Debugging

The EXPRESS toolkit includes a special memory allocation library that performs better than the
Standard C library (malloc). The toolkit memory allocator reduces the execution time of appli-
cations by about 10-15% so it is very desirable. However, it can make debugging more difficult
since it uses less structural overhead. (Less trace of damages are left behind if an application
crashes.)

The P21 toolkit uses the special memory allocator as well, however control of it is enabled only
through the EXPRESS toolkit makefile. To disable the special memory allocator and use the
Standard C library allocator, uncomment the definition of MALLOC in the makefile. To enable
more extensive (and expensive) debugging with the Standard C allocator (on a Sun), uncomment
DEBUG_MALLOC and DEBUG_MALLOC_LIB. Non-Sun systems may provide alternative tech-
niques for debugging the Standard C allocator. See the man page for more information.

Hasher Debugging

The EXPRESS toolkit includes a hash library which performs better than the Standard C library
(hsearch). Normally, the hasher collects no information other than what it needs to run. It is
possible for the hasher to collect extra information by adding two definitions to the CFLAGS defi-
nition in the makefile. -DHASH_DEBUG causes debugging information to be printed out during
hash table creation and deletion. -DHASH_STATISTICS causes the hasher to count the number of
hash table accesses and collisions.

The P21 toolkit uses the EXPRESS toolkit hasher. There is no way to change the performance of
the hasher through the P21 toolkit makefile.

10

Parser Debugging

The parser can generate debugging information. If enabled, the parser is capable of printing out
the token stream and parser rules used during the parse. To allow debugging code to be included
by the parser add the flag -DYYDEBUG to the CFLAGS definition. This code must in turn be en-
abled at run-time [10].

C Debugging/Optimization

Debugging can be enabled with the addition of -g to the CFLAGS definition in the makefile. In
the makefile, the definition of OPTIMIZE contains optimization flags that are passed to the C com-
piler. By default this is commented out. Uncomment to enable optimization. As distributed, this
includes several optimization flags that are specific to the GNU C compiler. These can be deleted
with impunity.

Building the EXPRESS Toolkit Library and Executables
Typically, the EXPRESS library and executables are built and then installed in a public area. It is
possible to build them without installing them. This is useful during testing. If you do not want to
test the libraries, go directly to Installing the EXPRESS Toolkit Library and Executables on page
11.

The following instructions assume the sources exist in the directory hierarchy ~/pdes.

libexpress.a

The EXPRESS library is called libexpress.a and is created using the following commands.

cd ~/pdes/src/express

make libexpress.a

You can now build applications with the EXPRESS toolkit.

fedex

The EXPRESS toolkit includes two applications. One is fedex [10]. fedex reads schemas and re-
ports any syntactic and semantic errors found. To build fedex, execute the following commands:

cd ~/pdes/src/express

make fedex

symlink

Another application that is provided in the express directory is symlink. symlink creates sym-
bolic links to a schema using all the schema names that appear inside the schema. This provides a
means of avoiding cutting and pasting schema files together. This is described further in [10]. Cre-
ate symlink as follows:

cd ~/pdes/src/express

make symlink

11

Installing the EXPRESS Toolkit Library and Executables
To allow other people to use the software, it should be copied to a public place. The simplest way
to do this is as follows:

cd ~/pdes/src/express

make install

The libraries and executable software are specific to a particular platform (i.e., computer hardware
and operating system version). Thus, this install command copies files to an architecture-specific
library called “arch/lib”. With architecture-specific symbolic links [20], it is possible to create
the illusion that machines of any architecture share arch/lib.

Building the P21 Toolkit Library and Executables
The P21 Toolkit library and executables are built similarly to the way that the EXPRESS Toolkit
and executables are built. The EXPRESS Toolkit library must be installed before proceeding fur-
ther.

libp21.a

The P21 library is called libp21.a and is created as:

cd ~pdes/src/p21

make libp21.a

p21

p21 reports errors in Part 21 files and any associated schemas. It is analogous in function to fe-
dex.To build it:

cd ~/pdes/src/p21

make p21

Installing the P21Toolkit Library and Executables
The P21 Toolkit software is installed similarly to how the EXPRESS Toolkit software is installed.

cd ~/pdes/src/p21

make install

Unpacking
Any files that you have received that end with “.Z” are compressed and must be uncompressed.
uncompress is a popular compression utility available on numerous public-access source-code re-
positories such as uunet.uu.net.

To uncompress files, run “uncompress” with the file names as arguments. For example:

uncompress exptk.tar.Z exptk-intro.ps.Z

After running uncompress, the .Z-terminated files will be replaced with files without the .Z.

% ls

exptk.tar exptk-intro.ps

12

Unpacking the Documentation
Files that end with “.ps” are PostScript files. These files can be directly sent to a PostScript
printer for printing. For example, on most UNIX systems this is done as:

% lpr exptk-intro.ps

Unpacking the Source Code
Files that end with “.tar” are archives of other files. These files are unpacked using tar, a pop-
ular archive program available on numerous public-access source-code repositories such as
uunet.uu.net. For example, on most UNIX systems tar extracts all the files from an archives
as:

% tar -xvf exptk.tar

extracting README (1 block)

extracting makefile (2 blocks)

. . . and so on . . .

tar automatically creates a directory named “src” if it does not already exist. By convention, a
directory such as “~/pdes” is a directory which contains subdirectories such as src, bin, etc.
src, in turn, contains source for different applications or components. To follow this convention,
exptk.tar is unpacked from the directory ~/pdes as:

% cd ~/pdes

% tar -xvf exptk.tar

The p21 toolkit is unpacked from the new src directory in ~/pdes as:

% cd ~/pdes/src

% tar -xvf p21.tar

Once tar has completed, you can remove the original tar file, exptk.tar, and go on to compile
the toolkit (Building and Installing the Toolkits on page 7).

Installing on DOS (IBM PC and clones)
The bulk of this paper assumes a UNIX environment. However, it is possible to use the NIST EX-

PRESS toolkit in the DOS environment.

Unfortunately, precise instructions vary from one compiler to another. For simplicity, pre-com-
piled DOS executables are available from the NIST server as pub/step/npttools/
fedex.exe.Z and p21.exe.Z. No guarantees are made as to their performance. For maximal
portability and safety, we strongly recommend rebuilding the executables.

Instructions are presented here which describe installation using “djgpp”, a free publicly-available
port of GCC, the GNU C compiler, to DOS. The instructions also depend on a Make-like tool,
such as qmk. These tools have the convenient properties that they are compatible with the UNIX
conventions used in the makefile. For example, object files end with .o, rather than the more
conventional .obj.

As of this writing, djgpp can be ftp’d from omnigate.clarkson.edu from the directory ftp/
pub/msdos/djgpp. Other miscellaneous utilities can be found in nearby directories. Required

13

files include gas###.zip, gcc###.zip, djdev.zip, bnubn###.zip, and qddvx###.zip.
(The ### indicates a number which may vary depending on the release.)

Mail access is available by emailing to archive-server@omnigate.clarkson.edu, using a
message body of “help” and “index msdos/djgpp” on separate lines.

Installation instructions for djgpp come with djgpp itself. The remaining instructions in this sec-
tion assume djgpp and the other utilities mentioned already.

lex and yacc

The lex and yacc files must be converted to C code. For simplicity, we recommend yacc and
lex processing be done on a UNIX box and the output files be used on the PC. Building fedex
and p21 on a UNIX box suffices to force creation of the C files.

fedex

To build fedex, execute the command:

make dosfedex

This creates a file called fedex.exe which is a DOS binary that can be run from the command
line.

p21

To build p21, execute the command:

make dosp21

This creates a file called p21.exe which is a DOS binary that can be run from the command line.

Questions, Problems, and Support
While we are willing to listen to problems, requests for extension, etc., we cannot guarantee any
kind of response. Since the system is distributed in source form, you are encouraged to experi-
ment with the system, especially if you have problems with it. While it is often quicker for you to
have us diagnose your problems, it is quicker for us to have you diagnose your own problems.
This software is a research prototype, intended to spur development of commercial products.

Nonetheless, if you do have questions and/or problems, you may send e-mail to
hotline@cme.nist.gov. Please include schemas, version numbers, platform descriptions, and any
other information that could be relevant.

Disclaimer
Trade names and company products are mentioned in the text in order to adequately specify ex-
perimental procedures and equipment used. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does
it imply that the products are necessarily the best available for the purpose.

14

Acknowledgments
This work was funded by the NIST Scientific and Technical Research Services as part of the
ARPA Persistent Object Base project, and the Computer-aided Acquisition and Logistic Support
(CALS) program of the Office of the Secretary of Defense as part of the Application Protocol De-
velopment Environment project.

Thanks to Stefan Schwarz (University of the Federal Armed Forces, Munich, Germany) for figur-
ing out how to use djgpp and qmk to compile the NIST Toolkits. Thanks to Craig Pawlak (NIST)
and Joshua Lubell (NIST) for additional assistance.

Thanks to Newton Breese (NIST) for significant improvements to the content and style of this pa-
per.

References
[1] Mason, H., ed., “Industrial Automation Systems – Product Data Representation and Ex-

change – Part 1: Overview and Fundamental Principles”, Version 9, ISO TC184/SC4/
WG PMAG Document N50, December 1991.

[2] Libes, Don, “The NIST EXPRESS Toolkit – Introduction and Overview”, NISTIR 5242, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, October 25, 1993

[3] Spiby, P., ed., “ISO 10303 Industrial Automation Systems – Product Data Representation
and Exchange – Part 11: Description Methods: The EXPRESS Language Reference
Manual”, ISO DIS 10303-11:1992(E), July 15, 1992.

[4] The NIST STEP Part 21 Exchange File Toolkit:An Update, NISTIR 5187, National Insti-
tute of Standards and Technology, Gaithersburg MD, September 8, 1993.

[5] Ressler, Sandy, “The National PDES Testbed Mail Server User’s Guide”, NISTIR 4508,
National Institute of Standards and Technology, Gaithersburg, MD, Jan., 1991.

[6] Katz, Susan, “STEP On-Line Information Service User’s Guide”, NISTIR 4491, National
Institute of Standards and Technology, Gaithersburg, MD, Jan., 1991.

[7] Libes, Don, and Fowler, Jim, “The NIST EXPRESS Toolkit – Requirements”, NISTIR 5212,
National Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[8] Libes, Don, “The NIST EXPRESS Toolkit – Design and Implementation”, Proceedings of the
Seventh Annual ASME Engineering Database Symposium, San Diego, CA, August 9-
11, 1993.

[9] Libes, Don, and Clark, Steve, “The NIST EXPRESS Toolkit – Lessons Learned”, Proceed-
ings of the 1992 EXPRESS Users’ Group (EUG ‘92) Conference, Dallas, Texas, Octo-
ber 17-18, 1992.

[10] Libes, Don, “The NIST EXPRESS Toolkit – Using Applications”, NISTIR 5206, National In-
stitute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[11] Libes, Don, “The NIST EXPRESS Toolkit – Programmer’s Reference”, National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

[12] Libes, Don, “The NIST EXPRESS Toolkit – Creating Applications”, National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

15

[13] Libes, Don, “The NIST EXPRESS Toolkit – Updating Existing Applications”, NISTIR 5205,
National Institute of Standards and Technology, Gaithersburg, MD, June 9, 1993.

[14] Clark, S.N., “The NIST Working Form for STEP”, NISTIR 4351, National Institute of
Standards and Technology, Gaithersburg, MD, November 1990.

[15] Clark, S.N., “NIST STEP Working Form Programmer’s Reference”, NISTIR 4353, Nation-
al Institute of Standards and Technology, Gaithersburg, MD, November, 1990.

[16] Johnson, S.C., “Yacc: Yet Another Compiler compiler”, UNIX Programmer’s Manual, Sev-
enth Edition, Bell Laboratories, Murray Hill, NJ, 1978.

[17] Stallman, Richard M., et al, GNU’s Bulletin, Free Software Foundation, Inc., Cambridge,
MA, June 1992.

[18] Lesk, M.E. and Schmidt, E., Lex: A Lexical Analyzer Generator, UNIX Programmer’s
Manual, Seventh Edition, Bell Laboratories, Murray Hill, NJ, 1978.

[19] Schreiner, Axel T. and Friedman, Jr., H. George, Introduction to Compiler Construction
with UNIX, New York, NY, Prentice Hall, 1985.

[20] Manheimer, Kenneth L., Warsaw, Barry A., Clark, Stephen N., and Rowe, Walter, “The De-
pot: A Framework for Sharing Software Installation Across Organizational and UNIX
Platform Boundaries”, Proceedings of the Fourth USENIX Large Installation Systems
Administration (LISA) Conference, pp. 37-46, Colorado Springs, CO, October 17-19,
1990.

